

US005736392A

United States Patent [19]

Hawley-Nelson et al.

[11] Patent Number: 5,736,392

[45] Date of Patent: Apr. 7, 1998

[54] PEPTIDE-ENHANCED CATIONIC LIPID TRANSFECTIONS

[75] Inventors: Pamela Hawley-Nelson, Silver Spring; Jianqing Lan, Germantown; PoJen Shih, Columbia; Joel A. Jessee, Mt. Airy; Kevin P. Schifferli, Germantown,

all of Md.

[73] Assignee: Life Technologies, Inc., Rockville, Md.

[21] Appl. No.: 658,130

[22] Filed: Jun. 4, 1996

Related U.S. Application Data

[63]	Continuation-in-part	of	Ser.	No.	477,354,	Jun.	7,	1995,
	abandoned.							

[51]	Int. Cl.6	***************************************	C12N	15/00;	C07K	14/005;
					G013	NT 22/02

[52] **U.S. Cl.** **435/320.1**; 435/172.3; 436/71; 530/350

[56] References Cited

U.S. PATENT DOCUMENTS

4,946,787	8/1990	Eppstein et al 264/4.1
5,166,320	11/1992	Wu et al 530/395
5,354,844	10/1994	Beug et al 530/345
5,574,142	11/1996	Meyer, Jr. et al 536/23.1
		Short 435/320.1

FOREIGN PATENT DOCUMENTS

B-26526/92	9/1992	Australia .
0 359 347	3/1990	European Pat. Off
0 544 292 A2	11/1992	European Pat. Off.
WO91/16024	10/1991	WIPO.
92/13570	8/1992	WIPO .
WO 93/07282	4/1993	WIPO .
WO 93/07283	4/1993	WIPO .
WO93/19768	10/1993	WIPO.
WO94/23751	10/1994	WIPO .
95/02397	1/1995	WIPO.
WO95/31557	11/1995	WIPO.
WO96/01841	1/1996	WIPO.
WO96/05218	2/1996	WIPO .
WO96/10038	4/1996	WIPO .

OTHER PUBLICATIONS

Kamata et al. Amphiphilic peptides enhance the efficiency of liposome-mediated DNA transfection Nucleic Acids Res. vol. 22 pp. 536-537, 1994.

Life Technologies Catalog 1993 pp. 9-19.

Grant, D.S. et al. (1989), "Two Different Laminin Domains Mediate the Differentiation of Human Endothelial Cells into Capillary-like Structures In Vitro," Cell 58:933-943.

Gardner, J.M. and Hynes, R.O. (1985), "Interaction of Fibronectin with Its Receptor on Platelets," *Cell* 42:439-448.

Wickham, T.J. et al. (1995), "Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs," *Gene Therapy* 2:750-756.

Pierschbacher, M.D. and Ruoslahti, E. (1987), "Influence of Stereochemistry of the Sequence Arg-Gly-Asp-Xaa on Binding Specificity in Cell Adhesion," *J. Biol. Chem.* 262(36):17294–17298.

Mason, P.W. et al. (1994), "RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway," *Proc. Natl. Acad. Sci. USA* 91:1932–1936.

Ruoslahti, E. and Pierschbacher, M.D. (1987), "New Perspectives in Cell Adhesion: RGD and Integrins," *Science* 238:491–497.

Pierschbacher, M.D. and Ruoslahti, E. (1984), "Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule," *Nature* 309:30–33.

Dedhar, S. et al. (1987), "A Cell Surface Receptor Complex for Collagen Type I Recognizes the Arg-Gly-Asp Sequence," J. Cell Biol. 104:585-593.

Friedlander, D.R. et al. (1988), "Functional Mapping of Cytotactin: Proteolytic Fragments Active in Cell-Substrate Adhesion," J. Cell Biol. 107:2329-2340.

Humphries, M.J. et al. (1986), "Identification of an Alternatively Spliced Site in Human Plasma Fibronectin That Mediates Cell Type-specific Adhesion," *J. Cell Biol.* 103:2637-2647.

Suzuki, S. et al. (1985), "Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin," *EMBO J.* 4(10):2519–2524.

Wayner, E.A. et al. (1989), "Identification and Characterization of the T Lymphocyte Adhesion Receptor for an Alternative Cell Attachment Domain (CS-1) in Plasma Fibronectin," J. Cell Biol. 109:1321-1330.

Lawler, J. et al. (1988), "Cell Attachment to Thrombospondin: The Role of ARG-GLY-ASP, Calcium, and Integrin Receptors," J. Cell Biol. 107:2351-2361.

Haverstick, D.M. et al. (1986), "Inhibition of Platelet Adhesion to Fibronectin, Fibrinogen, and von Willebrand Factor Substrates by a Synthetic Tetrapeptide Derived From the Cell-Binding Domain of Fibronectin," Blood 86(4):946-952.

Humphries, M.J. et al. (1987), "Identification of Two Distinct Regions of the Type III Connecting Segment of Human Plasma Fibronectin That Promote Cell Type-specific Adhesion," J. Biol. Chem. 262(14):6886-6892.

(List continued on next page.)

Primary Examiner—James Ketter
Assistant Examiner—John S. Brusca
Attorney, Agent, or Firm—Greenlee, Winner & Sullivan,
P.C.

[57] ABSTRACT

The present invention discloses compositions useful for transfecting eukaryotic cells comprising nucleic acid complexes with peptides, proteins or protein fragments, wherein the peptide is optionally covalently coupled to a DNA-binding group, and cationic lipids useful for transfecting eukaryotic cells. Methods for the preparation of transfecting compositions and use as intracellular delivery agents and extracellular targeting agents are also disclosed.

34 Claims, 8 Drawing Sheets